Expression of CCL2 and CCR2 in the hippocampus and the interventional roles of propofol in rat cerebral ischemia/reperfusion

نویسندگان

  • YONG-QING GUO
  • LI-NA ZHENG
  • JIAN-FENG WEI
  • XIAO-LAI HOU
  • SHU-ZHEN YU
  • WEI-WEI ZHANG
  • JIAN-MIN JING
چکیده

The aim of the present study was to determine the roles of the chemotactic factor, chemokine ligand 2 (CCL2), and its receptor, chemokine receptor type 2 (CCR2), in the hippocampus of rats with cerebral ischemia/reperfusion injury. In total, 24 Sprague-Dawley rats, weighting 250-300 g, were randomly divided into three groups (n=8): Sham-operated (C group), cerebral ischemia/reperfusion injury (I/R group) and propofol-intervention (P group) groups. The rats were sacrificed at 6 h after the ischemia/reperfusion surgery, and the brains were obtained to isolate the hippocampus. The mRNA expression levels of CCL2 and CCR2 in the hippocampus were analyzed by quantitative polymerase chain reaction, while the protein expression levels of CCL2 and CCR2 were determined by western blot analysis. The expression levels of CCL2 and CCR2 in the procerebrum were markedly elevated in the I/R and P groups at 6 h after the ischemia/reperfusion surgery when compared with the C group (P<0.05). In addition, the mRNA expression levels of CCL2 and CCR2 decreased significantly in the P group as compared with that in the I/R group (P<0.05). Therefore, CCL2 and CCR2 may be involved in the mechanisms underlying cerebral ischemia/reperfusion injury, and propofol may protect the brain through regulating the expression of CCL2 and CCR2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bad gene expression following effect of coenzyme Q10 on Wistar rat hippocampus with cerebral ischemia

Background: Q10 coenzyme is a potent antioxidant in the mitochondrial membrane. Releasing the oxygen free radicals occurs in the cerebral ischemia. Using Q10 coenzyme causes strength against oxidative after injury of cerebral ischemia during reperfusion. Also CoQ10 plays an important anti-apoptotic role to reduce Caspase 3 as a key enzyme neuroprotective in apoptosis. According to the sensitive...

متن کامل

Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via ‎Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein ‎Expression

Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...

متن کامل

Effects of Usnic Acid on Apoptosis and Expression of Bax and Bcl-2 Proteins in Hippocampal CA1 Neurons Following Cerebral Ischemia-Reperfusion

Introduction: Cerebral ischemia-reperfusion causes complex pathological mechanisms that lead to tissue damage, such as neuronal apoptosis. Usnic acid is a secondary metabolite of lichen and has various biological properties including antioxidant and anti-inflammatory activities. This study aimed to investigate the neuroprotective effects of usnic acid on apoptotic cell death and apoptotic-relat...

متن کامل

Neuroprotective effects of Withania coagulans root extract on CA1 hippocampus following cerebral ischemia in rats

Objective: Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. The beneficial effects of antioxidant nutrients, as well as complex plant extracts, on cerebral ischemia-reperfusion injuries are well known. This study was conducted to determine the effects of the hydro-alcoholic root extract of Withania coagulans on CA1 hippocampus oxidative damages followin...

متن کامل

Neurotrophic effect of hydroalcoholic extract of Malva neglecta leaf on pyramidal neurons of CA1 hippocampus of male Wistar rat following ischemia /reperfusion

Abstract Background: Stroke is the second leading cause of death in the world and has irreversible consequences. Cerebral ischemia/reperfusion (I/R) through production of oxidants and inflammatory markers causes apoptosis of brain neurons. On the other hand, in various studies, the antioxidant and anti-inflammatory effects of the Malva neglecta have been proven. Therefore, in this study, we inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014